Development of a Standardized Visual Inspection Aid for Plasma

Manish J. Gandhi, M.D.
Associate Professor of Laboratory Medicine and Pathology
Division of Transfusion Medicine

James R. Stubbs, M.D.
Associate Professor of Laboratory Medicine and Pathology
Chair, Division of Transfusion Medicine

Erik J. Levorson
Clinical Laboratory Technologist
Component Laboratory

Jessie A. Swanson, M.L.S
Clinical Laboratory Technologist
Component Laboratory

Kassandra L. Poffenberger
Education Specialist I
Component Laboratory

Katelyn K. Heaser
Clinical Laboratory Technologist
Component Laboratory

Lorraine C. Steele*
Clinical Laboratory Technologist
Component Laboratory

* Denotes Speaker
Disclosure

• None

Objectives

• Explain Whole Blood Processing
• Define Plasma Inspection Criteria
• Differentiate Plasma Quality Acceptability
• Describe Standardization of Plasma Quality Interpretation
• Evaluate Success of Plasma Inspection Aid
Whole Blood Processing - 1

- Whole blood (WB) is delivered by Donor Services
- Product code labels are applied and units are hung to filter

Whole Blood Processing - 2

- Filtered WB units are centrifuged.
- Then the plasma is manually expressed into a separate bag.
Whole Blood Processing - 3

- Red Blood Cell (RBC) and plasma bags are separated
- Visual inspection is performed
- RBC has segments made, is documented in the computer, and refrigerated
- The plasma is weighed, documented and frozen

Inspection Criteria for Plasma

- Color
- Lipemia
- Clots
- Contaminants
- Bag issues
• Is there a standard for RBCs in plasma?
• What volume of RBCs is acceptable in plasma?
• What does plasma look like at different RBC concentrations?

Is there a standard for RBCs in plasma?
• No regulatory standard
• The American National Red Cross “Visual Inspection Reference Guide”
 • Photos of normal plasma
 • Photos of normal plasma with red cells
 • No color or RBC concentration cut-off
What volume of RBCs is acceptable in plasma?

- Pathogen Reduction Technology we use for platelets has a specification of <4 \times 10^6 \text{ RBCs/mL}.
- This RBC concentration is an instrument limitation, not a patient care recommendation.
- The guideline was used to help set a cut-off for acceptable vs unacceptable plasma.

Plasma: Variation in RBC Concentration

0.0 mL – 0.50 mL
Determination of Visual Cut-off

- Color differences were observed by multiple techs to establish a visual cut-off.
- Visual cut-off was determined to have an RBC concentration of approx. 3.3×10^6 RBCs/mL.

Standardized Visual Inspection Aid

- No regulatory standards for red blood cells (RBCs) allowed in plasma.
- No visual inspection guide available that shows unacceptable limits for plasma.
- A standardized plasma inspection aid could be used to provide consistency across multiple work units.
Creation of Plasma Inspection Aid

- Used plasma units that were created when determining the variation in RBC concentration and its effect on the plasma color
- Cut off for acceptable vs unacceptable was determined visually as well as mathematically
- Professional photos were taken of sample units to provide an easy to use aid
Implementation and Outcomes

- Standard visual cut-off easier to determine plasma outcome.
- Discard rate: implementation 2%, improved to 1%
- Easy to use, convenient
- Revised cut-off concentration is 2.2×10^6 RBCs/mL

Survey Results

- 84% use the aid
- 87% aid is helpful
- 92% commented on how aid improved visual inspection
- Consistency, Standardization and Scientific Support
Review of Objectives

- Explain Whole Blood Processing
- Define Plasma Inspection Criteria
- Differentiate Plasma Quality Acceptability
- Describe Standardization of Plasma Quality Interpretation
- Evaluate Success of Plasma Inspection Aid
Thank You