COVID-19 Molecular Testing

Matthew J. Binnicker, Ph.D., D(ABMM)
Director of Clinical Virology
Professor of Laboratory Medicine and Pathology
Vice Chair of Practice
Mayo Clinic, Rochester, MN

Presenter:
Matthew J. Binnicker, Ph.D.
Director of Clinical Virology
Professor of Laboratory Medicine and Pathology
Vice Chair of Practice
Department of Laboratory Medicine and Pathology
at Mayo Clinic, Rochester, Minnesota
Disclosures

• Advisory Board Member for DiaSorin molecular

Coronaviruses: From the Common Cold to Global Contagion

Common human coronaviruses:
• HCoV-OC43
• HCoV-NL63
• HCoV-229E
• HCoV-HKU1
Coronaviruses: From the Common Cold to Global Contagion

Coronaviruses associated with severe disease:

• SARS (2002-2003)
 - ~8,422 cases (~10% CFR)
• MERS (2012)
 - ~2,500 cases (~35% CFR)
• SARS-CoV-2 (2019-2020)
 - ~3,200,000 cases
 - ~7% CFR

Why do certain coronaviruses cause more severe disease?
Why do certain coronaviruses cause more severe disease?

SARS (2003)

Why do certain coronaviruses cause more severe disease?

MERS (2012)

SARS (2003)
Why do certain coronaviruses cause more severe disease?

- SARS (2003)
- MERS (2012)
- SARS-CoV-2 (COVID-19)

SARS-CoV-2 (COVID-19): Laboratory Testing

- Molecular (Real-time PCR)
 - Detects viral RNA in clinical samples
 - Diagnose active infection with SARS-CoV-2
- Serology
 - Detects antibodies (i.e., IgG) to SARS-CoV-2
 - Determines whether an individual has been exposed
SARS-CoV-2 (COVID-19): Molecular Testing

Molecular (real-time PCR) tests have generally targeted a combination of the following genes:

- Nucleocapsid (N)
- Open reading frame 1ab (Orf1ab)
- Envelope (E)
- RNA dependent RNA polymerase (RdRp)

SARS-CoV-2 (COVID-19): Molecular Testing

Appropriate sample types:

- Nasopharyngeal swab (preferred)
- Oropharyngeal (throat) swab

If evidence of LRTI or later in disease:

- Sputum
- BAL fluid
- Tracheal secretions
SARS-CoV-2 (COVID-19): Molecular Testing

When is SARS-CoV-2 shed at the highest amount?

- Peak viral shedding ~24 h *prior* to symptom onset
- Detection in upper airway (i.e., NP swab) likely drops after 3-5 days post onset

SARS-CoV-2 (COVID-19): Molecular Testing

What is the sensitivity of the COVID-19 PCR test?
SARS-CoV-2 (COVID-19): Molecular Testing

What is the sensitivity of the COVID-19 PCR test?
Is it really only 60%?!

- At this point, laboratories know the analytical sensitivity of these tests
SARS-CoV-2 (COVID-19): Molecular Testing

What is the sensitivity of the COVID-19 PCR test?

Is it really only 60%?!

- At this point, laboratories know the analytical sensitivity of these tests
- The *clinical* sensitivity still needs to be defined
- Likely depends on several factors:
 - Timing of collection
 - Sample type
 - Quality of sample collected
 - Test

SARS-CoV-2 (COVID-19): Molecular Testing

- Study by Wang et al (JAMA 5 Mar 2020):
 - Assessed PCR detection among hospitalized patients
 - Detection rates in various clinical samples
 - BAL: 14 (93%) of 15 samples
 - Sputum: 75 (72%) of 104 samples
 - Nasal swabs: 5 (63%) of 8 samples
 - Throat swabs: 126 (32%) of 398 samples
 - Feces: 44 (29%) of 153 samples
 - Blood: 3 (1%) of 307 samples
 - Urine: 0 (0%) of 72
SARS-CoV-2 (COVID-19): Summary

• COVID-19 is caused by SARS-CoV-2

• Laboratory Testing for SARS-CoV-2:
 • Real-time PCR (acute diagnosis)
 • Serology (prior exposure)

• Sensitivity of PCR testing depends on:
 • Timing of disease when testing performed
 • Sample type collected
 • Quality of sample
 • Test performance characteristics

Thank you!