Relentless innovation
“The wellspring of our innovation is our integrated practice, which brings multiple specialists together to identify gaps in our knowledge of patient care”
William Morice, II, M.D., Ph.D., president and chief executive officer
Eye on Innovation
The latest
Artificial intelligence (AI) is reshaping laboratory medicine, not as a distant promise, but as a practical tool improving diagnostics, workflows, and quality. Through collaborative development, rigorous validation, and a commitment to ethical innovation, Mayo Clinic Laboratories is implementing AI-driven solutions that enhance precision, reduce turnaround times, and empower laboratorians to focus on what matters most: patient care.
In a groundbreaking study, Mayo Clinic investigators have developed a multiomic molecular method to predict clinical COVID-19 (SARS-CoV-2) outcomes better than traditional cytokines. Using a machine-learning-based prediction model, the team identified 102 biomarkers, which include several novel cytokines and other proteins, lipids, and metabolites. The discovery may help clinicians reliably predict a more severe course of COVID-19 before the patient gets sick enough to be hospitalized. Until now, there have been no biomarkers that can reliably predict which patients are more likely to have severe illness.
In Mayo Clinic’s Advanced Diagnostics Laboratory, there are dozens of projects underway at once to develop new technologies, discover novel findings, validate new tests, and support physicians in providing advanced patient care. For example, researchers are using phage immunoprecipitation sequencing (PhIP-Seq) to discover new serological biomarkers for autoimmune diseases. In a recent study using PhIP-Seq, Mayo Clinic researchers discovered a previously unknown antibody marker for immune-mediated rippling muscle disease (iRMD). This finding will support testing options and accurate diagnosis of iRMD, helping physicians treat patients with iRMD and restore their quality of life.
In a recent study, Mayo Clinic researchers developed the first cellular DNA barcoding with a machine-learning approach to reveal previously unknown metastatic behavior of tumor cells. Researchers barcoded the DNA of millions of human ovarian cancer cells and transplanted them in mice, where rare tumor initiating cells and their progenies could be tracked within the primary tumor as well as in every other organ they were spreading into. The entire community of cells generated by a single barcoded cell had identical barcodes. This enabled the tracking of a large number of benign and metastatic clones by sequencing DNA barcodes in tumors and various organs, including blood and ascites. Using the cellular DNA barcoding approach and a newly developed data analysis system, researchers could track clonal growth dynamics in various metastatic sites and trace it back to its ancestral tumor-initiating cell. They used artificial intelligence to tackle the complex data to identify if the clonal metastatic spread is happening peritoneally or through blood routes.
Bringing together advanced testing technology, unparalleled expertise, and a patient-focused approach, Mayo Clinic Laboratories’ new high-resolution urine drug testing profile, ADMPU, evaluates for 22 drug classes including alcohol, marijuana, and nicotine, enabling clarity on substance use and precision insights that propel treatment.
This unique Mayo Clinic resource offers a novel portal into the study of gene mutations before they cause breast cancer.
As Mayo Clinic’s Anatomic Pathology moves from traditional glass slides to digital images, the advance in technology is achieving clear benefits in collaboration, learning, and patient care.
In a world of ever-faster technical change, Mayo Clinic Laboratories is uniquely positioned to innovate. Collaboration with clinicians pinpoints unmet patient needs and facilitates the development of diagnostic testing that provides answers.
Successful implementation of a new slide scanning and analysis platform across five laboratories represents a significant step forward in Mayo Clinic’s digital pathology program — an initiative that combines advanced technology with human expertise to better serve patients.
Experts at Mayo Clinic have developed a unique method of testing that combines new technology with novel bioinformatics to promptly detect a group of uncommon genetic conditions that are often difficult to identify.
To safeguard patient samples, staff in Mayo Clinic’s Histology Laboratory devised an inventive way to ensure that none of the paraffin-embedded blocks processed in the lab ever ends up in the trash.
The quest to create a test pinpointing the source of the rare, testicular cancer-associated illness successfully concluded in the summer of 2021.
As chair of Mayo Clinic’s new Division of Computational Pathology and AI in the Department of Laboratory Medicine and Pathology, Jason Hipp, M.D., Ph.D., is eager to employ the most innovative tools available to benefit patients around the globe.