With a background in organic chemistry, Mukesh Pandey, Ph.D., initially planned to work in the pharmaceutical industry developing medications. But after completing a post-doctoral research fellowship in radiology at Harvard Medical School, he chose to focus his skills on improving imaging technologies to better detect the first signs of disease. Now he is a nuclear radiology researcher in the Department of Radiology at Mayo Clinic in Rochester, Minnesota.
Dr. Pandey is part of a Mayo Clinic team that has developed a new radioactive tracer used with molecular imaging to identify the early biochemical changes linked to prostate cancer. With support from the Mayo Clinic Center for Individualized Medicine, Dr. Pandey and his colleagues are testing the radioactive tracer in the clinic, with the goal of detecting and treating the disease sooner.
“Prostate cancer is one of the most common types of cancer in men. If detected early when it is confined to the prostate, treatment can be more successful. We hope this new technology will improve patient care by providing a clearer understanding of the biochemical status of the disease, allowing for more individualized treatment,” says Dr. Pandey.
A radio chemical element known as gallium-68 (Ga-68) is used to create a radioactive tracer to detect prostate cancer. The drug illuminates biological changes linked to the disease on a molecular imaging test. However, a worldwide shortage of Ga-68 prompted Dr. Pandey and his team to search for alternative ways to produce the radioactive tracer.
“These radioactive tracers are critical to helping us screen for prostate cancer with molecular imaging tests, such as a positron emission tomography (PET) scan. These tests allow physicians to search for disease on the cellular level. While x-rays, CT scans and MRIs provide an anatomical picture of the body, molecular images take a deeper dive into the biological and chemical processes taking place,” he says.
“While many types of prostate cancer grow slowly and require minimal or no treatment, some forms are more aggressive and can spread throughout the body. That’s why it is critical to detect the disease in its earliest stages when it is most treatable,” adds Dr. Pandey
Read the rest of the story on Mayo Clinic's Individualized Medicine blog.