Mayo Clinic Laboratory and Pathology Research Roundup: Aug. 27

The Research Roundup provides an overview of the past week’s research from Mayo Medical Laboratories consultants, including featured abstracts and complete list of published studies and reviews.


Featured Abstract

A Mechanism for Preventing Asymmetric Histone Segregation onto Replicating DNA Strands

How parental histone (H3-H4)2 tetramers, the primary carriers of epigenetic modifications, are transferred onto leading and lagging strands of DNA replication forks for epigenetic inheritance remains elusive. Mayo Clinic researchers show that parental (H3-H4)2 tetramers are assembled into nucleosomes onto both leading and lagging strands, with a slight preference for lagging strands. The lagging strand preference increases markedly in cells lacking Dpb3 and Dpb4, two subunits of the leading strand DNA polymerase, Pol ε, due to the impairment of parental (H3-H4)2 transfer to leading strands. Dpb3-Dpb4 binds H3-H4 in vitro and participates in the inheritance of heterochromatin. These results indicate that different proteins facilitate the transfer of parental (H3-H4)2 onto leading vs lagging strands, and that Dbp3-Dpb4 plays a significant role in this poorly understood process. The study was published in Science.


Published to PubMed This Week

Kelley Luedke

Kelley Luedke is a Marketing Channel Manager at Mayo Clinic Laboratories. She is the principle editor and writer of Insights and leads social media and direct marketing strategy. Kelley has worked at Mayo Clinic since 2013. Outside of work, you can find Kelley running, traveling, playing with her kitty, and exploring new foods.